Publications

Publications (co)first, (co)senior or corresponding authorships are marked with an asterisk *

  1. Zhou (preprint). Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles. BioRxiv, 2023-10.
  2. *Diez-Rodriguez et al. (preprint) Epigenetic variation in the Lombardy poplar along climatic gradients is independent of genetic structure and persists across clonal reproduction. Biorxiv: https://doi.org/10.1101/2023.01.05.522822
  3. Milesi et al. (preprint) Synchronous effective population size changes and genetic stability of forest trees through glacial cycles. Biorxiv.doi: https://doi.org/10.1101/2023.01.05.522822
  4. *Opgenoorth et al. (preprint) Not so ancient: Misclassification of alpine plants biases the dating of the evolution of alpine biota in the Himalaya-Tibet Orogen. https://doi.org/10.32942/osf.io/s9rfh
  5. Peña-Pontón (2024) High-resolution methylome analysis uncovers stress-responsive genomic hotspots and drought-sensitive TE superfamilies in the clonal Lombardy poplar. Journal of Experimental Botany, erae262..
  6. *Sekely et al. (2024). Genomic Responses to Climate: Understanding local adaptation in the Andean tree species Nothofagus pumilio and implications for a changing world. Plants, People, Planet. DOI: 10.1002/ppp3.10504
  7. Reuber et al. (2024) Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent.Molecular Ecology. 2024;33:e17271. https://doi.org/10.1111/mec.17271.
  8. Zeuss et al. (2023). Nature 4.0: A networked sensor system for integrated biodiversity monitoring. Global Change Biology 30 (1) https://doi.org/10.1111/gcb.17056
  9. Pyhäjärvi et al. (2023) Gene sequence variation data for the publication" Synchronous effective population size changes and genetic stability of forest trees through glacial cycles": version 1.0.
  10. Merene et al. (2023) Ground and tiger beetles (Coleoptera: Carabidae, Cicindelidae) of the Federal Democratic Republic of Ethiopia: a provisional faunistic checklist based on literature data. Zootaxa, 5247(1), 1-345.
  11. Faille et al. (2023) Explosive radiation versus old relicts: The complex history of Ethiopian Trechina, with description of a new genus and a new subgenus (Coleoptera, Carabidae, Trechini). Deutsche Entomologische Zeitschrift, 70(2), 311-335.
  12. Wraase et al.(2023) Remote sensing‐supported mapping of the activity of a subterranean landscape engineer across an afro‐alpine ecosystem. Remote Sensing in Ecology and Conservation, 9(2), 195-209.
  13. *Schmidt et al. (2023) Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan-Tibetan Orogen. Scientific Reports 13 (1), 13272 [https://doi.org/10.21203/rs.3.rs-2190050/v1](https://doi.org/10.1038/s41598-023-38999-6)
  14. *Martine et al. (2022) The South Asian monsoon maintains the disjunction of Rumex hastatus between the western Himalayas and the Hengduan Mountains, southwest China. Nordic Journal of Botany, 2022(11), e03706
  15. Zacharias et al. (2022) Genetic basis of growth reaction to drought stress differs in contrasting high‐latitude treeline ecotones of a widespread conifer. Molecular Ecology, 31(20), 5165-5181.
  16. Asgharinia (2022) Towards Continuous Stem Water Content and Sap Flux Density Monitoring: IoT-Based Solution for Detecting Changes in Stem Water Dynamics. Forests, 13(7), 1040.
  17. Mishra et al. (2021) A chromosome-level genome assembly of the European Beech (Fagus sylvatica) reveals anomalies for organelle DNA integration, repeat content and distribution of SNPs. Frontiers in Genetics 12, 2748
  18. Romera et al. (2021) The new Garba Guracha palynological sequence: Revision and data expansion. Quaternary Vegetation Dynamics-The African Pollen Database, 127-134.
  19. Reuber et al. (2021) Complete mitochondrial genome of the giant root-rat (Tachyoryctes macrocephalus). Mitochondrial DNA Part B 6 (8), 2191-2193.
  20. *Opgenoorth & Rellstab (2021) Tackling the challenges of evolutionary forest research with multidata approaches. Molecular Ecology 30 (16), 3893-3895.
  21. *Opgenoorth et al (2021) Rewinding the molecular clock in the genus Carabus (Coleoptera: Carabidae) in light of fossil evidence and the Gondwana split: A reanalysis. PlosOne
  22. Ramirez-Valiente et al. (2021) Adaptive responses to temperature and precipitation variation at the early‐life stages of Pinus sylvestris. New Phytologist.
  23. Gil-Romera (2021) The highest altitude paleoecological record of early pastoralism in Africa. EGU 21-12530.
  24. Major et al. (2021) Spatial genetic structure at local and global scales across the species range in silver fir (Abies alba Mill.). Molecular Ecology: 30(20), 5247-5265.
  25. Miao et al. (2021) Evolutionary history of two rare endemic conifer species from the eastern Qinghai–Tibet Plateau. Annals of Botany.
  26. Can et al (2021) The EpiDiverse Plant Epigenome-Wide Association Studies (EWAS) Pipeline. Epigenomes 5 (2), 12
  27. *Opgenoorth et al (2021) The GenTree Platform: growth traits and tree-level environmental data in twelve European forest tree species. GigaScience 10 (3), giab010
  28. Benavides et al (2021) The GenTree Leaf Collection: inter- and intraspecific leaf variation in seven forest tree species in Europe. GGlobal Ecology and Biogeography 30 (3), 590-597
  29. Ramirez-Valiente et al (2021) Climatic drivers of selection on seed mass, emergence time and early growth rates across the distribution range of Scots pine (Pinus sylvestris L.). New Phytologist 229 (5), 3009-3025
  30. Valdez-Correcher et al (2021) Search for top-down and bottom-up drivers of latitudinal trends in insect herbivory in oak trees in Europe. Global Ecology and Biogeography 30 (3), 651-665
  31. Bittner et al (2020) Revisiting afro-alpine Lake Garba Guracha in the Bale Mountains of Ethiopia - rationale, chronology, geochemistry, and paleoenvironmental implications. Journal of Paleolimnology, 64(3), 293-314.
  32. Solé-Medina et al (2020) Genetic variation in early fitness traits across European populations of silver birch (Betula pendula). AoB Plants, doi.org/10.1093/aobpla/plaa019
  33. Castagneyrol et al (2020) Can School Children Support Ecological Research? Lessons from the ‘Oak Bodyguard’ Citizen Science Project. Citizen Science: Theory and practice 5(1): 10, pp. 1–11. DOI: https://doi.org/10.5334/cstp.267
  34. Avanzi et al (2020) Individual reproductive success in Norway spruce natural populations depends on growth rate, age and sensitivity to temperature. Heredity, doi:10.1038/s41437-020-0305-0
  35. Li et al (2020) Molecular phylogeography and evolutionary history of the endemic species Corydalis hendersonii on the Qinghai-Tibetan Plateau inferred from chloroplast DNA and ITS sequence variation. Frontiers in Plant Science 11, 436.
  36. Martínez-Sancho et al (2020) The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Scientific Data 7 (1) 1-7.
  37. *Ossendorf et al (2019) Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science 365 (6453) 583-587.
  38. Estravis-Barcala et al (2019) Molecular bases of responses to abiotic stress in trees. Journal of Experimental Botnay, erz532, doi: 10.1093/jxb/erz532
  39. Friess et al (2019) Introducing Nature 4.0: A sensor network for environmental monitoring in the Marburg Open Forest. Biodiversity Information Science and Standards 3, e36389.
  40. Mosca et al (2019) A reference genome sequence for the European silver fir (Abies alba): a community-generated genomic resource. Genes, Genomes, Genetics. https://doi.org/10.1534/g3.119.400083
  41. Friess et al (2019) Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forest. Diversity and Distribution, 1-14. doi: 10.1111/ddi.12882
  42. Avanzi et al (2019) Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations. Science of the Total environment.
  43. *Heer et al (2018) Detection of somatic epigenetic variation in Norway spruce via targeted bisulfite sequencing. Ecology and Evolution.
  44. *Miehe et al (2018) The Kobresia pygmaea ecosystem of the Tibetan Highlands: Origin, functioning and degradation of the world's largest pastoral alpine ecosystem. Science of the Total environment. doi: 10.1016/j.scitotenv.2018.08.164
  45. Ammer et al (2018) Key ecological research questions for Central European forests. Basic and Applied Ecology. doi: 10.1016/j.baae.2018.07.006
  46. Karki et al (2018) IPBES - Chapter 1 - Setting the Scene: Biodiversity and Ecosystem Services in the Asia Pacific Region. IPBES Secretariat, Bonn, Germany.
  47. *Heer et al (2018) Linking dendroecology and association genetics: Stress responses archived in tree rings associate with SNP genotypes in Abies abla (Mill.). Molecular Ecology. doi: 10.1111/mec.14538
  48. *Heer et al (2018) The diversifying field of plant epigenetics. New Phytologist 217 (3): 988-992.
  49. Richards et al (2017) Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecology Letters 20 (12): 1576-1590. doi: 10.1111/ele.12858
  50. *Schmidt et al (2017) Mass elevation and lee effect override latitudinal effects in determining the distribution ranges of species: Ground beetles from the Himalaya-Tibet Orogen. PLoSone 12(3): e0172939.
  51. *Hof et al (2017) It's not (all) about the money - supporting IPBES through challenging times. Frontiers of Biogeography 9 (1).
  52. Brändle et al (2017) Genetic diversity in the alpine flatworm Crenobia alpina. Webecology 17(29), 29.
  53. *Wan et al (2016) The Quaternary evolutionary history, potential distribution dynamics and conservation implications for a Qinghai-Tibet Plateau endemic herbaceous perennial, Anisodus tanguticus (Solanacae). Ecology and Evolution 8(2), 105-107.
  54. *Heer et al (2016) Detection of SNPs based on transcriptome sequencing in Norway spruce (Picea abies (L.) Karst). Conservation Genetics Resources. DOI: 10.1007/s12686-016-0520-4
  55. *Opgenoorth & Hotes (2016) IPBES is in the books: Pollination and scenario assessments are two steps to guiding policy makers in the global biodiversity crisis. Frontiers in Biogeography 8 (1).
  56. Schmidt et al (2015) Speciation, uplift, and climate change. – In: Miehe, G. & Pendry, C. (eds.): Nepal. An introduction to the natural history, ecology and human environment in the Himalayas. A companion to the Flora of Nepal. – Royal Botanic Garden Edinburgh.
  57. Shang et al (2015) Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau. Scientific Reports 5.
  58. *Gossner et al (2015) Where is the extended phenotype in the wild? The community composition of arthropods on mature oak trees does not depend on the oak genotype. PLoSone 10 (1), e0115733.
  59. *Müller & Opgenoorth (2014) On the gap between science and conservation implementation - a national park perspective. Basic and Applied Ecology 15 (2014), 373-378.
  60. Müller et al (2014) Relative heart size but not body size within population of two rodent species increases with elevation: reviving Hesse's rule. Journal of Biogeography 41 (12), 2211-2220.
  61. *Hotes & Opgenoorth (2014) Trust and Control at the Science-Policy Interface in IPBES. BioScience, biu019.
  62. *Opgenoorth et al (2014) IPBES: Biodiversity panel should play by rules. Nature 506, 159.
  63. *Miehe et al (2014) How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint. Quaternary Science Reviews 86, 190-209.
  64. *Opgenoorth & Faith (2013) The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), up and walking. Frontiers of Biogeography 5 (4), 207-211.
  65. *Bacht et al (2013) Are Ring Ouzel (Turdus torquatus) populations of the low mountain ranges remnants of a broader distribution in the past? Journal of Ornithology 154 (1), 231-237.
  66. *Miehe & Opgenoorth (2013) The End of the Forest on Top of the World. German Research 2/2013: 22–25.
  67. Liu et al (2012) Molecular bases for parallel evolution of translucent bracts in an alpine “glasshouse” plant Rheum alexandrae (Polygonaceae). Journal of Systematics and Evolution 51 (2), 134-141.
  68. *Schmidt et al (2012) Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups. PLoSone 7 (9), e45482.
  69. *Zou et al (2012) Molecular phylogeography and evolutionary history of Picea likiangensis in the Qinghai-Tibetan Plateau inferred from mitochondrial and chloroplast DNA sequence variation. Journal of Systematics and Evolution 50 (4), 341-350.
  70. *Schmidt et al (2011) Neoendemic ground beetles and private tree haplotypes: two independent proxies attest moderate LGM summer temperature depression of 3 to 4K for the southern Tibetan Plateau. Quaternary Science Reviews 30, 1918-1925. Invited paper.
  71. Michalczyk et al (2010) Genetic support for periglacial survival of juniper populations in Central Europe. The Holocene 20 (6), 887-994.
  72. *Opgenoorth et al (2010) Tree endurance on the Tibetan Plateau marks the world's highest known tree line of the Last Glacial Maximum. New Phytologist, 185 (1), 332-342. Paper was highlighted in the editorial section of that New Phytologist edition.
  73. *Opgenoorth (2009) Identification and characterization of nuclear microsatellites in Juniperus tibetica using next generation sequencing. Conservation Genetics Resources 1 (1).
  74. Kaiser et al (2009) Charcoal and fossil wood from palaeosols, sediments and artificial structures indicating Late Holocene woodland decline in southern Tibet (China). Quaternary Science Reviews, 28 (15-16), 1539-1554.
  75. Miehe et al (2007) An inventory of forest relicts in the pastures of Southern Tibet (Xizang A.R.,China). Plant Ecology, 194 (2), 157-177.
  76. Miehe et al (2007) Mountain forest islands and Holocene environmental changes in Central Asia: A case study from the southern Gobi Altay, Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology, 250 (1-4), 150-166.
  77. *Opgenoorth et al (2005) Isolated Birch and Willow Forests in the Govi Gurvan Sayhan National Park. Erforschung biologischer Ressourcen der Mongolei, 9, 247-258.
  78. Cermak et al (2005) Isolated Mountain Forests in Central Asian Deserts. A Case Study from the Govi Altay, Mongolia. In: Broll, G. & Keplin, B.(Hrsg.) Mountain Ecosystems. Springer. 253-273.
  79. *Cermak & Opgenoorth (2003) Dynamics of forest islands in the Govi Altay: microclimate and human impact. Berliner Paläobiologische Abhandlungen, 2: 28-29.